
D� Run II Online Examine Framework

Design and Requirements

J. Yu & J. Kowalkowski

D� Note # 3578

We present a design of the D� Run-II Examine framework. We propose

the Examine framework design to be the baseline design of any user interac-

tive framework. We also lay out various requirements for Run II D� online

Examine package. By no means does this document detail the speci�c needs

of each of the di�erent types of Examines programs. THis document only

attempts to de�ne a baseline structure for the Examine executables and GUI.

1 Introduction

Online Examine is a program which is used by the shifters or each individual

detector group personnel to monitor various sections of the detector and

data integrity. Examine provides tools for monitoring the experiment, via

histograms compared to the best known reference sets and event displays.

The current approach for Run-II Examine is to have two separate pieces, a

GUI and an executable, working hand-in-hand. The Examine executable re-

constructs events, calculates relevant physical quantities, and �lls histograms.

The GUI allows the user to interact with the given Examine executable and

display histograms being �lled or events being reconstructed by the exe-

cutable. The communication between the two pieces is carried out by either

the D� Client/Server package or a CORBA compliant package depending

on the choice of the GUI language.

Examine must provide enough freedom for the users to select the events.

One must be able to select events directly from the DAQ by:

1

Examine Framework Design & Requirements, January 7, 1999 2

� One or more data stream names w/ prescale factors

� One or more Level 1 trigger names w/ prescale factors

� One or more Level 2 trigger names w/ prescale factors

� One or more Level 3 trigger names w/ prescale factors

� Any combinations of the above

The lists of the above selections should be con�gurable in a selected RCP

�le.

Each Examine executable will have its own event selection RCP �le. In

order to ensure this functionality during the event selection, the Data Distrib-

utor (DD) is designed to be aware of the associations between the selections

and each individual Examine executable (see Ref. [1] for DD design require-

ments).

The user presentation portion (GUI) of the program must be fool-proof

and automatic to minimize human manual intervention. For example, all

histogram operations - display, reset, update, declare, etc - must be push

button controlled.

2 Design Philosophy

The Examine framework must not only utilize as much of the existing in-

terfaces/hooks and packages in the o�ine batch framework as possible but

must also be designed with interactive o�ine framework in mind. Since in

principle, the Examine framework is a generalized version of the interactive

o�ine framework, we must try to keep the design exible enough to eas-

ily add any unforeseen functionalities that may be required by the o�ine

interactive framework.

The executables must be completely RCP driven the same way as the

current batch o�ine framework is. The packages and interfaces listed in the

framework RCP �le are used in building the given Examine program. In

addition, the Examine framework should be easily expandable by utilizing

free standing interfaces as much as possible.

Examine Framework Design & Requirements, January 7, 1999 3

The speci�c packages that should be included in an Examine executable

must be determined according to the responsibilities of the type of an Exam-

ine. The speci�c, detailed needs of individual Examines should be provided

by the persons in charge of authoring the particular Examine. Thus, we will

not include the speci�c discussions in this note, although they will have to

be part of this note in the near future. Since the event data bu�ering and

handling is discussed in detail in Ref. [1], we will only concentrate on the

Examine framework design, executable and GUI representation requirement

portion in this note.

3 Run - I Examines

In Run-I, there were �ve di�erent types of Examine executables and were

a minimum �ve Examine processes running at all times in the normal shift

environment. Table 1 summarizes the Examine programs and their respon-

sibilities. The responsibilities in table 1 are the determining factors of the

Table 1: Types and responsibilities of Examines in Run -I.

Examine Responsibility

Detector Examines

Calorimeter Monitor CC, EC, and ICD

Muon Monitor WAMUS and SAMUS systems

Tracker Monitor CDC and FDC systems

Global Examine Reconstruct express line events online,

�ll reconstructed quantities in histograms, and

provide event displays for shifters.

Trigger Examine Mostly provide software trigger

performances and rates for each bit.

Examine work-horse CPU and memory capacities, as well as the packages

needed to carry out the given responsibility.

All the di�erent Examines were separate executables running on vax sta-

tions. The user interactive portion of the Examine histogram display was

carried out via PAW, accessing histograms stored in the shared memory on

Examine Framework Design & Requirements, January 7, 1999 4

the same physical machine. The scheme was that one starts data processing

of the given executable, followed by starting a PAW session to connect to the

shared memory to display histograms while they are �lled.

4 Run - II Examine Con�gurations

Since the detector has been upgraded from Run-I con�guration, there are

more parts of the detector to be monitored. This will increase the number of

detector monitoring Examines. Table 2 summarizes the types of Examines

and their responsibilities that are needed for Run-II.

Table 2: Types and responsibilities of Examines in Run-II.

Examine Responsibility

Detector Examines

Calorimeter Monitor CC, EC, ICD, FPS, CPS systems

Muon Monitor WAMUS and SAMUS systems

Tracker Monitor SMT, CFT, Solenoid(?) systems

Beam Monitor L�and FPD systems

Global Examine Reconstruct events in selected streams

and �ll in reconstructed quantities

in histograms and at the same time

provide event displays for shifters.

Trigger Examine Mostly provide software trigger

performances and rates for each bit.

The current conceptual design of the Examine work-horse machines is

most likely a collection of Linux PC nodes for analysis, histogramming, and

event reconstruction. On the other hand, the GUI portion of Examine would

likely be run under Windows NT. However, both the executable and the GUI

portion of a given Examine should be written such that the program does

not depend on the choice of the platforms or operating systems.

Examine Framework Design & Requirements, January 7, 1999 5

5 Existing O�ine Batch Framework

Since the o�ine framework is essentially a subset of that of the online Ex-

amine, it would make sense that the Examine framework would fully utilize

the existing o�ine batch framework. In addition, the functionality required

by user interactive o�ine framework shares many of its necessary features of

the Examine framework. Thus it is useful to design the frameworks to share

as much code as possible. In this section, we will discuss the existing o�ine

framework and what interfaces or packages that need to be added to satisfy

the Examine framework requirements.

The current o�ine framework exists only in non-interactive manner. The

framework provides several interfaces which are essentially abstract classes

that modules in the given package implement using inheritance. The user's

package de�nes and implements various interfaces that get executed at each

stage of the framework event processing ow (see Ref. [2]).

The o�ine framework interfaces consist of two large categories: interfaces

that make up the main event processing ow and the interfaces that are free-

standing and independent of the ow.

5.1 Interfaces in the O�ine Framework Flow

There exists a set of interfaces in the event processing ow. A given package

can have multiple interfaces (hooks) implemented depending on the needs of

an analysis. Each interface speci�es the stage of execution within the event

processing loop.

The existing interfaces/hooks in the event processing ow are:

1. \Generator"+\Decide"

2. \Build"

3. \Filter"

4. \Process"

5. \Analyze"

6. \Dump"

The sequence listed above is a recommended framework ow where execution

of implemented interfaces of a package occurs.

Examine Framework Design & Requirements, January 7, 1999 6

5.2 Free-standing Hooks

The free standing interfaces/hooks are the interfaces that can be executed at

any time, independent of the main event processing ow. The implemented

interfaces can be called at the speci�ed stage of the program independent

of the ow. A more detailed description of these interfaces can be found in

Ref. [2].

Currently there are three free-standing interfaces available in the batch

framework that a user can implement. The hooks are:

� \RunInit"

� \RunEnd"

� \JobSummary"

6 Design of the Examine Framework

As discussed in section 2, the Examine Framework can be viewed as a gener-

alized interactive o�ine framework. In order to understand the requirements

for the Examine better, it is necessary to provide a clear picture of the under-

lying architecture or the skeletons of the framework. Thus, we will describe

the Examine framework data and message ow architecture, given the current

design, in this section. Since the current design can be subdivided into two

sections based on functionality, each section, for the most part, is indepen-

dent. We will describe the design of these two di�erent sections separately.

The two sections are Data Processing and Histogram Presentation.

Even though the descriptions of the two functions are done separately

in this section, the �nal look of the user interactive control panel does not

necessarily have to be two independent windows. In fact, we currently would

like to combine the two control panels into one GUI window as shown later

in Fig. 3 in section 15.

6.1 Data Processing Control

Figure 1 shows the baseline design of the Examine Data Processing mes-

sage ow. The functionality of the box at each stage is as follows:

Examine Framework Design & Requirements, January 7, 1999 7

Figure 1: A message and data ow diagram for data processing portion of

the Examine control panel.

Examine Framework Design & Requirements, January 7, 1999 8

1. Select Input: Present the choices of the following input sources

(a) DAQ

(b) File

(c) List of the running Examine Processes

If input 1a or 1b is chosen, one steps to the Examine type selection.

The \list of running Examine Processes" is obtained from the \Process

Registry". Selecting one of the running processes will allow the user

interface (GUI) to connect to the given histogram and/or event display

ports but not to the message port which governs the process control

message ow.

2. Select Examine: This step selects the type of Examine executable to

run. The di�erent type of Examine will have di�erent combinations of

packages de�ned in the framework RCP. The list of Examine packages

is kept in the Process Registry, being distinguished by their names and

corresponding RCP �les (histogram). The Process Registry is necessary

to minimize duplication of the same type of Examines with the same

list of histograms. The user will make the �nal decision whether to run

one's own Examine or not.

3. Start Processing: This stage sends a request for a speci�c Examine

executable to be initiated to the Process Registry. The list of RCP �les

are passed to the Process Registry to tag the Examine process for the

future queries by other users.

4. Process Registry: This program looks at the Examine PC array and

selects a machine, and spawns the requested Examine executable. The

spawned executable informs theRegistry of its various communication

ports. The Registry relays this information back the Graphical User

Interface so that the GUI can attach to the running Examine process.

Since the Process Registry plays an important role in the current

design, we will have more detailed discussion in section 7.

5. Initialization: At this stage, the following should occur

(a) Start independent threads:

Examine Framework Design & Requirements, January 7, 1999 9

� Message Interface

� Main Framework Watchdog Interface

� Thread Watchdog Interface

(b) Construct a \Generator" package that uses event selection to at-

tach itself to the DD.

(c) Construct packages required for histogram display, event display,

etc. These are the communication interfaces in Fig 1.

(d) Construct all the reconstruction and analysis packages needed by

the Examine executable. Histogram and event display ports are

created at this stage.

(e) Registers all the created communication ports to the Process Reg-

istry.

6. getEventNet: Use the \Generator" package to get an event from

source. The I/O packages in the framework (need a new one called

ReadEventNet for direct DAQ reception) get the events from the DD

bu�er and pass the event to the next stage. ReadEvent and New-

Event are probably the corresponding o�ine framework packages. There

should be some methods to keep the statistics and the status of the

package for the status report.

7. Process Event: This stage reconstructs an event to the depth relevant

to the given Examine type and �lls histograms. This process also keeps

the statistics and a status ag. The o�ine framework interfaces that

could be involved in this step are:

� \Build"

� \Filter"

� \Process"

� \Analyze"

� \Dump"

8. The steps 6 and 7 repeat till one of the followings occur

(a) DD sends the end of run message in the bu�er.

Examine Framework Design & Requirements, January 7, 1999 10

(b) The Message Interface receives one of the control messages - stop,

abort, pause.

The actions Stop and Abort cause the executable to step to the Finish.

9. Finish: When one of the above control conditions occurs, the program

should gracefully go to the \Finish" stage. The process will, then, end

doing the following cleanups.

(a) Query the user for:

� Continuing to run, retaining all histogram entries.

� Continuing to run, writing out the current set of histograms in

the memory to a disk �le (\Flush") and reseting histograms.

� Terminating the program, writing out histograms and other

open �les, and closing communication ports.

{ Destroy the \Generator" package. Act of doing so closes

up the �les (if the input was �le) or detaches from the

DD.

{ Destroy all the reconstruction and the analysis packages.

Act of doing so dumps all the histograms into the relevant

�les and deletes the histogram port.

{ Report back to the user interface of ending the executable

process.

{ Notify the Process Registry that the program is ending.

{ Terminate the Message Interface and various other com-

munication interfaces.

{ Exit.

10. The user interface then either terminates itself, destroying the GUI, or

prompt the user for continuation of the given process.

7 The Process Registry

There should be one program that runs on the Examine PC farm that knows

all the processes currently running on the farm and the corresponding ma-

chines. The Examines are known to the Process Registry by their type names

and RCP version numbers.

Examine Framework Design & Requirements, January 7, 1999 11

7.1 Exchanged Message to/from the Registry

The messages that should be exchanged between external processes and the

registry are :

� \Query" - Examine Name, RCP versions) \Results(xxx,yyy,zzz)"

� \Start" - Examine Name, RCP names and versions) \ACK(xxx,yyy,zzz)"

or \NACK(xxx,yyy,zzz)"

� \GetList" - Input source) \Results(xxx,yyy,zzz)"

7.2 Entries to the Process Registry

The Entries to the ProcessRegistry are :

� Process Name

� Location:

{ Host Name

{ Message Interface Port

{ Histogram Interface Port

{ Event Display Interface Port

{ Other Interface Port

� Examine Type

� RCP information and identi�cation

It is probably a good idea to manage the ports as a list, where each entry in

the list contains port names and the numbers. For example, we can keep the

list of three port names and the corresponding port numbers as follows:

� (\Message", 1117)

� (\Histogram",22223)

� (\Watchdog",13245)

Examine Framework Design & Requirements, January 7, 1999 12

7.3 Responsibilities of the Registry

The responsibilities of the process registry are:

1. Receive a request to start a new Examine from an Examine User inter-

face.

2. Assign an Examine Farm machine for the job.

3. Spawn the requested Examine on the assigned machine.

4. Receives information from the Examine process regarding port names

and numbers.

5. Send all port information back to the user interface.

6. Keep information of all Examine processes currently running, distin-

guishing them by their type names and associated RCP version num-

bers.

7. Provide the list of running Examine processes in the Examine Linux

cluster, in response to queries from an Examine user interface.

8. Provide all the port information for the given Examine to the user

interface upon request.

9. Keep the log of which machine ran which Examine with the correspond-

ing time stamps.

10. Ping all the Examine processes periodically to check for the stale pro-

cesses. Trigger process restarts.

8 Responsibilities of the Messaging Interface

1. Wait for messages from the user interface (GUI).

2. Respond to status report requests.

3. Respond to Control Requests in a timely fashion.

Examine Framework Design & Requirements, January 7, 1999 13

4. Respond to the \ping" requests from the Process Registry for stale

process check.

5. Deliver framework Dump interface information.

9 Responsibilities of the Histogram Interface

1. Record histogram port information.

2. Wait for messages from the Histogram Control portion of the user in-

terface.

3. Provide available histogram categories and individual histogram names

to the GUI.

4. Send the appropriate histograms to the GUI when requested.

5. When an update is requested, continuously send the given set of his-

tograms to the GUI.

6. Send control messages related to histogram saving and resetting to the

relevant package.

10 Framework Watchdog

There should be a MainThreadWatchDog that intercepts any possible prob-

lem with the main framework program and restarts the executable automat-

ically. When the program restarts, the old histograms that were being �lled

should be there in the memory so that to the user everything should be as

transparent as possible. Jim thinks that it is possible to use the system

\Memory Map"facility. The possible procedure is to have the program open

a �le, using the virtual memory in the system, and update the memory when-

ever the histograms are updated. If for some reason the executable dies, the

watchdog can still restart the process, read in the memory map, and start

back where it left out before the crash. Jim thinks that this facility is fast

and is relatively easy to implement into the framework as one of the separate

threads.

Examine Framework Design & Requirements, January 7, 1999 14

The main thread should have protection built in so that it knows how

many processes are connected to itself. It should know when the last time

it had been queried, and depending on the condition, throw an alarm for a

possible Run-away process.

11 Responsibilities of the Thread Watchdog

The child ThreadWatchDog is also a separate thread that wakes up periodi-

cally in the middle of the process and checks the response of the child threads

(message, histogram, event display, and watchdog interfaces). If the threads

do not register for a certain period of time, the Watchdog stops the thread

and restarts.

1. Wake up periodically for a very short time to check the staleness of all

child threads.

2. If there is a staled child thread, it removes the thread and restart it

using the same port.

3. It must know all the port numbers used by the child threads and the

association between the thread and the port numbers.

4. Needs to send log messages of its actions to the central alarm/log server.

12 Histogram Presentation Control

One of the independent threads that is initiated at the beginning of an Ex-

amine process is the \Histogram Interface". This histogram interface handles

the communication between the histogram control portion of the Examine

GUI and the executable. Since the histogram control has an intimate rela-

tionship with the choice of the physics analysis tool (PAT), the online group

has concentrated on choosing a PAT. After a few sessions of demonstrations

of HistoScope and ROOT, we have made a decision to choose the ROOT as

our ultimate PAT platform.

The histogram control system's functionality, however, is independent of

the choice of PAT. Figure 2 shows the message ow on the histogram control

portion of the GUI-executable interaction. The requests from the GUI for

Examine Framework Design & Requirements, January 7, 1999 15

Figure 2: A message and data ow diagram for histogram display portion of

the Examine control panel.

Examine Framework Design & Requirements, January 7, 1999 16

histogram must be mapped to corresponding commands in the given PAT.

The histograms that are accumulated in the memory port must be trans-

ported within the given PAT framework to the display, via the \Histogram

Interface". Both the HistoScope and ROOT browsers have abilities for dis-

playing histograms transported over the network.

13 Online Addition to O�ine Framework

Based on the discussions in sections 6 through 12, we can identify some

changes to the existing o�ine batch framework. The changes are to the

methods of the package base classes.

13.1 Subdivision of the Process Space

Table 3 shows subdivisions of the process space while an Examine executable

is running. It should be noted that the process space split into two main

parts; 1) the main thread which does reconstruction and histogramming and

2) independent threads which provide a means for external processes to in-

teract asynchronously.

Table 3: Subdivision of the Examine process space. The mainthread column

lists public methods of the framework base class.

Child Threads Main Thread

Message Interface Framework Control

Histogram Interface �ndPackage(Name)

ThreadWatchDog resume()

MainThreadWatchDog stop()

EventDisplay Interface stepEvent()

etc... stepPackage()

pause()

etc....

Examine Framework Design & Requirements, January 7, 1999 17

13.2 Framework Class

The framework class must support the following methods.

� �ndPackage(Name) : Given a name of the package, return a pointer to

the package.

� pause(): Stop the event processing as soon as possible, before the next

framework package interface processing starts.

� resume(): Resume processing from the current point.

� stop(): Cause the framework to jump to Finish stage that is explained

in section 6.1, as if it has depleted the event source.

� stepEvent(): Step through the framework process one full event and

stop before starting the next event.

� stepPackage(): Step through one framework package interface and stop.

� Flush(): Cause the framework to write out data and histograms to

open �les.

�

These methods will be executed by the Message Interface Thread. By no

means are the above methods meant to be the complete set of the public

methods. The design of the framework is such that it should be easy to

implement methods as needed.

13.3 Package Base Class

Each individual Examine package must inherit from this Package base class.

The base class should require the following methods to be written in sub-

classes:

� statusReport(Ostream, WhereToReport)

� getRCP()

� reInitialize(RCP)

Examine Framework Design & Requirements, January 7, 1999 18

� Activate()

� deActivate()

� Flush()

� etc...

13.4 Additional Framework Hook

There may be an additional hook, OutputStage, necessary to insure full re-

construction of an event before delivery to the Event Display. To be more

speci�c, an event display I/O package would deliver an event to the Event

Display GUI during the call to the OutputStage interface.

14 Examine Executable Requirements

In this section, we will discuss the requirements which are related to Examine

executable responsibilities.

� The executable should be platform independent, although the most

likely platform for the executable to run on is linux.

� The GUI and the executable should be able to start up either on the

same machine or on two physically di�erent machines under two di�er-

ent operating systems.

� The executable must be connected to the central alarm server.

� The executable should utilize the o�ine framework interfaces and pack-

ages.

� Choice of a subsystem Examine must be possible within the given

Examine executable. For instance, one must be able to select only

the SMT system within the detector Examine without having to run

through all the other detector systems.

� The selection of the desired subsystems in the Examine must be RCP

controlled. In other words, all the control functions of the executables

must be RCP driven, following the o�ine framework scheme.

Examine Framework Design & Requirements, January 7, 1999 19

� The packages involved in reconstruction and analyses must follow o�ine

framework guideline, which is based on RCP �les.

� The packages must provide public methods, listed in section 13.2, for

free-standing interfaces to communicate with.

The requests from client/GUI to :

{ start/stop/�nish processing

{ Pause/Resume processing

{ Terminate/Abort processing

must be provided in the packages as public methods that can be ac-

cessed via the free-standing \Message Interface".

� Communicate with the it Process Registry and respond to various in-

quiries.

� Book standard and additional user selected sets of histograms, de�ned

in the RCP �les at the start of processing,

� Fill standard sets of histograms.

� Perform appropriate level of reconstruction to �ll histograms. The

depth of reconstruction depends strongly on the responsibility of the

given Examine. For example, the global Examine will require a full re-

construction while the calorimeter Examine would require the digitized

pulse heights only with some reconstructed information at times.

� Must be able to save histograms into a �le, when requested.

� Read in Run Control Parameters (RCP) that include the name of the

event selection �le, discussed in the introduction. The RCP must have,

at the minimum:

{ Reference histogram �lename

{ Filename for event selection conditions

{ Choice of event selection (stream/trigger Names)

{ etc.

Examine Framework Design & Requirements, January 7, 1999 20

� Pass the requested selection conditions to the Data Distributor for

bu�er registration and allocation.

� Attach itself to the assigned bu�er or queue for event reception from

the DD.

� Reconnect automatically to the DD if the connection is lost. Retry con-

necting to DD for a given period and prompt the user of the connection

problem.

� Receive messages on run transitions from the DD and pass the messages

to GUI (ie., to the user for the transition, via the \Message Interface")

and take appropriate action.

� Allow many connections for histogram access, but keep the shifter GUI

as the only controller of the histogram reset, delete, and declare ma-

nipulation.

� Should be able to accept a data �lename as an input source and perform

analyses using the �le.

15 Examine GUI Requirements

In this section, we will list the requirements for Examine GUI representations.

Figure 3 shows a conceptual design of an Examine GUI window.

� Must run on any platform.

� Must know how to connect to the \Process Registry".

� Must have an input selection drop-down menu with DAQ or File as

the data source entries.

� Must provide the list of currently available Examine processes for His-

togram access.

� Must provide the list of possible Examine executables.

� Must be able to request a start of an Examine executable to the \Pro-

cess Registry".

Examine Framework Design & Requirements, January 7, 1999 21

Figure 3: A prototype Examine GUI window written in Python.

Examine Framework Design & Requirements, January 7, 1999 22

� Must provide the list of available histograms via the \Histogram Inter-

face".

� Must provide su�cient online help for the operation of GUI and Ex-

amines.

� Must know how to communicate with the Examine executable via the

\Message Interface" for process control.

� Must know to communicate to the PAT for histogram manipulations.

� Be aware of the Examine executable connection status. Be able to

reconnect itself if the connect is lost.

References

[1] S.Fuess et. al, Online Group, \D� Online Data Distributor Require-

ments," D� Note #3540 (1998)

[2] J. Kowalkowski et al., \Framework User's Guide,"

http://www-d0/run2 o�ine software/framework/framework.html

[3] H.Greenlee, J.Hobbs, S.Snyder, and V.White, \D�OM User Guide",

Section 3, 23 (1998)

